Integrability of Induction Cocycles for Kac-moody Groups
نویسنده
چکیده
We prove that whenever a Kac-Moody group over a finite field is a lattice of its buildings, it has a fundamental domain with respect to which the induction cocycle is L for any p∈ [1; +∞). The proof uses elementary counting arguments for root group actions on buildings. The applications are the possibility to apply some lattice superrigidity, and the normal subgroup property for Kac-Moody lattices.
منابع مشابه
The two parameter quantum groups $U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra and their equitable presentation
We construct a family of two parameter quantum grou-\ps $U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody algebra corresponding to symmetrizable admissible Borcherds Cartan matrix. We also construct the $textbf{A}$-form $U_{textbf{A}}$ and the classical limit of $U_{r,s}(mathfrak{g})$. Furthermore, we display the equitable presentation for a subalgebra $U_{r...
متن کاملExtensions of diffeomorphism and current algebras
Dzhumadil’daev has classified all tensor module extensions of diff(N), the diffeomorphism algebra in N dimensions, and its subalgebras of divergence free, Hamiltonian, and contact vector fields. I review his results using explicit tensor notation. All of his generic cocycles are limits of trivial cocycles, and many arise from the Mickelsson-Faddeev algebra for gl(N). Then his results are extend...
متن کاملLie Symmetries, Kac-Moody-Virasoro Algebras and Integrability of Certain (2+1)-Dimensional Nonlinear Evolution Equations
In this paper we study Lie symmetries, Kac-Moody-Virasoro algebras, similarity reductions and particular solutions of two different recently introduced (2+1)-dimensional nonlinear evolution equations, namely (i) (2+1)-dimensional breaking soliton equation and (ii) (2+1)-dimensional nonlinear Schrödinger type equation introduced by Zakharov and studied later by Strachan. Interestingly our studie...
متن کاملThe Haagerup property, Property (T) and the Baum-Connes conjecture for locally compact Kac-Moody groups
We indicate which symmetrizable locally compact affine or hyperbolic Kac-Moody groups satisfy Kazhdan’s Property (T), and those that satisfy its strong negation, the Haagerup property. This reveals a new class of hyperbolic Kac-Moody groups satisfying the Haagerup property, namely symmetrizable locally compact Kac-Moody groups of rank 2 or of rank 3 noncompact hyperbolic type. These groups thus...
متن کاملIntegral Forms of Kac–moody Groups and Eisenstein Series in Low Dimensional Supergravity Theories
Kac–Moody groups G over R have been conjectured to occur as symmetry groups of supergravities in dimensions less than 3, and their integer forms G(Z) are conjecturally U– duality groups. Mathematical descriptions of G(Z), due to Tits, are functorial and not amenable to computation or applications. We construct Kac–Moody groups over R and Z using an analog of Chevalley’s constructions in finite ...
متن کامل